闽都创新实验室在高性能N型PbS热电材料方面取得重要进展

时间:2022-04-21 字体【 | |

  热电材料可以实现热能和电能的直接相互转换,在余热回收利用、放射性同位素热电发生器和光电半导体芯片制冷等领域具有广泛的应用。热电转换技术的效率是由材料的热电优值ZT决定的。提高材料的ZT尤其是平均热电优值ZTavg,是提高转化效率的关键。但是,由于热电参数(包括电导率、泽贝克系数和热导率)之间存在强相互耦合作用,使得ZT的提高异常困难。

  铅基硫属化合物(PbX,X=Te,Se和S)是中温区(500−900 K)综合性能优异的热电材料。尤其是PbTe和PbSe具有较高的热电性能。然而,Te和Se元素在地壳中的丰度较低,原材料价格高,导致热电器件制造成本高,限制了其大规模的应用。虽然PbS因其较低的热电性能而长期被忽视,但相较于PbTe和PbSe,其具有更高的熔点和稳定性,能够在更宽的温度范围内稳定工作。而S元素的高性价比也使得PbS材料在近年来受到越来越多的关注。近期,闽都创新实验室罗中箴教授与合作者实现了N型PbS材料电输运机理和热电性能的新突破。所研制的N型PbS材料在400−923 K温度区间平均热电优值ZTavg高达0.76,是N型PbS热电材料目前报道的最高值。

  该研究发现,在Sb掺杂的N型PbS中,通过合金化GeS,发生Ge价态歧化反应,生成了Pb5Ge5S12第二相。Pb5Ge5S12的生成引入了S空位,提高了载流子浓度和电导率,优化了电输运性能。通过对Pb5Ge5S12半导体价带和导带的测量发现,其与PbS基体具有接近的导带位置,保证了载流子较高的迁移率。相较于在P型PbX中通常采用的价带对齐优化策略,文章创新性地实现了N型PbX体系的导带对齐。另一方面,由点缺陷(固溶的偏心Ge原子、掺杂剂Sb,以及S空位)、纳米尺度Ge和中尺度Pb5Ge5S12共同构成了多尺度分级结构,能够有效散射声子,降低了材料晶格热导率。最终实现了电、热输运性能的同时优化,获得了0.76的ZTavg,这是目前N型PbS热电材料报道的最高值。同时,首次合成了Pb5Ge5S12半导体的玻璃态和多晶材料,并研究了其基本的物理性能。

  

图1. 在PbS基体中合金化GeS时,形成的第二相Pb5Ge5S12与PbS基体实现了导带对齐,保证了载流子较高的迁移率(图a)。另一方面,由点缺陷(固溶的偏心Ge原子、掺杂剂Sb,以及S空位)、纳米尺度Ge和中尺度Pb5Ge5S12共同构成了多尺度分级结构,增强声子散射,有效降低了材料晶格热导率(图b)。

图2. 莫特肖特基以及紫外光电子能谱测试表明Pb5Ge5S12与PbS实现导带对齐。Pb5Ge5S12在有效增强声子散射,引入S空位提高载流子浓度的基础上,维持了载流子的高迁移率。

图3.点缺陷(固溶在PbS基体的偏心Ge、掺杂剂Sb,以及S空位)、纳米尺度Ge和中尺度Pb5Ge5S12共同构成了多尺度分级结构,有效散射了声子;同时,由于Pb5Ge5S12与基体PbS导带对齐,维持了载流子的高迁移率(图a),最终实现了电、热输运性能的同时优化,有效提高了ZTavg (图b)。相关研究成果发表在Journal of the American Chemical Society上。

  罗中箴教授为该论文第一作者,论文得到了邹志刚院士、新加坡南洋理工大学颜清宇教授和美国西北大学Mercouri G. Kanatzidis教授的指导。该研究获得闽都创新实验室、科技部国家重点研发专项、国家自然科学基金等项目的资助。

  文章链接:https://pubs.acs.org/doi/abs/10.1021/jacs.2c01706.

 

(罗中箴供稿)

附件下载:

    扫一扫在手机打开当前页